Some properties of the metanorm of a group

Maria De Falco

Department of Mathematics and Applications University of Napoli Federico II

SandGAL 2019

Maria De Falco Department of Mathematics and Applications University of Napoli Federico II

Some properties of the metanorm of a group

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- Interpretent of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- **O** $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- x ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- In the concept of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- **O** $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- x ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- In the concept of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- x ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- In the concept of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- Q x ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- In the concept of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- ② x ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- In the concept of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- *x* ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.
 Schenkman's result is also a consequence of the fact that every power automorphism is central (Cooper, 1968).

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- In the concept of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- *x* ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.

- If G is a group, the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G.
- Interpretent of norm has been introduced by R. Baer in 1934.
- G = N(G) if and only if all subgroups of G are normal (i.e. G is a Dedekind group)
- If N(G) is not abelian, then G is periodic (Baer).
- If N(G) is not periodic, then N(G) = Z(G) (Baer).
- $N(G) \leq Z_2(G)$ (Schenkman, 1960).
- *x* ∈ N(G) if and only if the inner automorphism induced by x is a power automorphism.
 Schenkman's result is also a consequence of the fact that every power automorphism is central (Cooper, 1968).

- The *X*-norm of G is the intersection of all normalizers of subgroups of G which are not in *X* (A. Ballester-Bolinches, J. Cossey, Z. Zhang, 2014).
- 2 The norm coincides with the J-norm, where J is the class of all trivial groups.
- The T-norm, where T is the class of all periodic groups, has been studied by M. De Falco, F. de Giovanni, C. Musella, Y.P. Sysak (2018).
- Survey on properties of the various relevant norms: M.G. Drushlyak, T.D. Lukashova, F.M. Lyman, Generalized norms of groups, Algebra Discrete Math. 22 (2016) 48–81.

- The *X*-norm of G is the intersection of all normalizers of subgroups of G which are not in *X* (A. Ballester-Bolinches, J. Cossey, Z. Zhang, 2014).
- Provide a state of the state
- The J-norm, where J is the class of all periodic groups, has been studied by M. De Falco, F. de Giovanni, C. Musella, Y.P. Sysak (2018).
- Survey on properties of the various relevant norms: M.G. Drushlyak, T.D. Lukashova, F.M. Lyman, Generalized norms of groups, Algebra Discrete Math. 22 (2016) 48–81.

- The *X*-norm of G is the intersection of all normalizers of subgroups of G which are not in *X* (A. Ballester-Bolinches, J. Cossey, Z. Zhang, 2014).
- Provide the second s
- The J-norm, where J is the class of all periodic groups, has been studied by M. De Falco, F. de Giovanni, C. Musella, Y.P. Sysak (2018).
- Survey on properties of the various relevant norms: M.G. Drushlyak, T.D. Lukashova, F.M. Lyman, Generalized norms of groups, Algebra Discrete Math. 22 (2016) 48–81.

- The *X*-norm of G is the intersection of all normalizers of subgroups of G which are not in *X* (A. Ballester-Bolinches, J. Cossey, Z. Zhang, 2014).
- Provide the second s
- The J-norm, where J is the class of all periodic groups, has been studied by M. De Falco, F. de Giovanni, C. Musella, Y.P. Sysak (2018).
- Survey on properties of the various relevant norms: M.G. Drushlyak, T.D. Lukashova, F.M. Lyman, Generalized norms of groups, Algebra Discrete Math. 22 (2016) 48–81.

- The *X*-norm of G is the intersection of all normalizers of subgroups of G which are not in *X* (A. Ballester-Bolinches, J. Cossey, Z. Zhang, 2014).
- Provide the second s
- The J-norm, where J is the class of all periodic groups, has been studied by M. De Falco, F. de Giovanni, C. Musella, Y.P. Sysak (2018).
- Survey on properties of the various relevant norms: M.G. Drushlyak, T.D. Lukashova, F.M. Lyman, Generalized norms of groups, Algebra Discrete Math. 22 (2016) 48–81.

Metanorm

The *metanorm* M(G) of G is the intersection of the normalizers of all non-abelian subgroups of G, i.e. M(G) is the A-norm, where A is the class of abelian groups.

- M. De Falco, F. de Giovanni, L.A. Kurdachenko, C. Musella: The metanorm and its influence on the group structure, J. Algebra, 2018
- M. De Falco, F. de Giovanni, L.A. Kurdachenko, C. Musella: The metanorm, a characyeristic subgroup, embedding properties, J. Group Theory, 2018

Metanorm

The *metanorm* M(G) of G is the intersection of the normalizers of all non-abelian subgroups of G, i.e. M(G) is the A-norm, where A is the class of abelian groups.

- M. De Falco, F. de Giovanni, L.A. Kurdachenko, C. Musella: The metanorm and its influence on the group structure, J. Algebra, 2018
- M. De Falco, F. de Giovanni, L.A. Kurdachenko, C. Musella: The metanorm, a characyeristic subgroup, embedding properties, J. Group Theory, 2018

- G is called *metahamiltonian* if every non-abelian subgroup of G is normal.
- Metahamiltonian groups were introduced and studied in a series of papers by G.M. Romalis and N.F. Sesekin (1966–1970).
- A group G is said to be *locally graded* if every finitely generated non-trivial subgroup has a proper subgroup of finite index
- If G is a locally graded metahamiltonian group, G' finite and has prime-power order (the result has been proved by Romalis and Sesekin for soluble groups).
- If G is a locally graded metahamiltonian group and |G'| is a power of the prime number p, we will call p the characteristic of G.
- The structure of soluble metahamiltonian groups has been described also by N.F. Kuzennyi, N.N. Semko (1983–1990).

- G is called *metahamiltonian* if every non-abelian subgroup of G is normal.
- Metahamiltonian groups were introduced and studied in a series of papers by G.M. Romalis and N.F. Sesekin (1966–1970).
- A group G is said to be *locally graded* if every finitely generated non-trivial subgroup has a proper subgroup of finite index
- If G is a locally graded metahamiltonian group, G' finite and has prime-power order (the result has been proved by Romalis and Sesekin for soluble groups).
- If G is a locally graded metahamiltonian group and |G'| is a power of the prime number p, we will call p *the characteristic* of G.
- The structure of soluble metahamiltonian groups has been described also by N.F. Kuzennyi, N.N. Semko (1983–1990).

- G is called *metahamiltonian* if every non-abelian subgroup of G is normal.
- Metahamiltonian groups were introduced and studied in a series of papers by G.M. Romalis and N.F. Sesekin (1966–1970).
- A group G is said to be *locally graded* if every finitely generated non-trivial subgroup has a proper subgroup of finite index
- If G is a locally graded metahamiltonian group, G' finite and has prime-power order (the result has been proved by Romalis and Sesekin for soluble groups).
- If G is a locally graded metahamiltonian group and |G'| is a power of the prime number p, we will call p *the characteristic of* G.
- The structure of soluble metahamiltonian groups has been described also by N.F. Kuzennyi, N.N. Semko (1983–1990).

- G is called *metahamiltonian* if every non-abelian subgroup of G is normal.
- Metahamiltonian groups were introduced and studied in a series of papers by G.M. Romalis and N.F. Sesekin (1966–1970).
- A group G is said to be *locally graded* if every finitely generated non-trivial subgroup has a proper subgroup of finite index
- If G is a locally graded metahamiltonian group, G' finite and has prime-power order (the result has been proved by Romalis and Sesekin for soluble groups).
- If G is a locally graded metahamiltonian group and |G'| is a power of the prime number p, we will call p *the characteristic of* G.
- The structure of soluble metahamiltonian groups has been described also by N.F. Kuzennyi, N.N. Semko (1983–1990).

- G is called *metahamiltonian* if every non-abelian subgroup of G is normal.
- Metahamiltonian groups were introduced and studied in a series of papers by G.M. Romalis and N.F. Sesekin (1966–1970).
- A group G is said to be *locally graded* if every finitely generated non-trivial subgroup has a proper subgroup of finite index
- If G is a locally graded metahamiltonian group, G' finite and has prime-power order (the result has been proved by Romalis and Sesekin for soluble groups).
- If G is a locally graded metahamiltonian group and |G'| is a power of the prime number p, we will call p *the characteristic of* G.
- The structure of soluble metahamiltonian groups has been described also by N.F. Kuzennyi, N.N. Semko (1983–1990).

- G is called *metahamiltonian* if every non-abelian subgroup of G is normal.
- Metahamiltonian groups were introduced and studied in a series of papers by G.M. Romalis and N.F. Sesekin (1966–1970).
- A group G is said to be *locally graded* if every finitely generated non-trivial subgroup has a proper subgroup of finite index
- If G is a locally graded metahamiltonian group, G' finite and has prime-power order (the result has been proved by Romalis and Sesekin for soluble groups).
- If G is a locally graded metahamiltonian group and |G'| is a power of the prime number p, we will call p *the characteristic of* G.
- The structure of soluble metahamiltonian groups has been described also by N.F. Kuzennyi, N.N. Semko (1983–1990).

- G is called *metahamiltonian* if every non-abelian subgroup of G is normal.
- Metahamiltonian groups were introduced and studied in a series of papers by G.M. Romalis and N.F. Sesekin (1966–1970).
- A group G is said to be *locally graded* if every finitely generated non-trivial subgroup has a proper subgroup of finite index
- If G is a locally graded metahamiltonian group, G' finite and has prime-power order (the result has been proved by Romalis and Sesekin for soluble groups).
- If G is a locally graded metahamiltonian group and |G'| is a power of the prime number p, we will call p *the characteristic of* G.
- The structure of soluble metahamiltonian groups has been described also by N.F. Kuzennyi, N.N. Semko (1983–1990).

Theorem (N.F. Kuzennyi, N.N. Semko) Let G be a locally graded metahamiltonian non-nilpotent group.

- If G is metabelian, then $\exists K \leq G$ such that $G = K \ltimes G'$, $K/C_K(G')$ is cyclic and for each $y \in K \setminus C_K(G')$, G' is a minimal $\langle y \rangle$ -invariant subgroup.
- ② If G is not metabelian, G is periodic and if p is the characteristic of G, then |G''| = p, $|G'| = p^3$ and G/G' has no elements of oder p. Moreover, G'' ≤ Z(G), G'/G'' is an eccentric chief factor of G, and G/C_G(G'/G'') is cyclic.

Moreover, it follows from other results of Kuzennyi and Semko that any nilpotent metahamiltonian group is metabelian.

Theorem (N.F. Kuzennyi, N.N. Semko)

Let G be a locally graded metahamiltonian non-nilpotent group.

- If G is metabelian, then ∃K ≤ G such that G = K ⋈ G', K/C_K(G') is cyclic and for each y ∈ K \ C_K(G'), G' is a minimal ⟨y⟩-invariant subgroup.
- ② If G is not metabelian, G is periodic and if p is the characteristic of G, then |G''| = p, $|G'| = p^3$ and G/G' has no elements of oder p. Moreover, G'' ≤ Z(G), G'/G'' is an eccentric chief factor of G, and $G/C_G(G'/G'')$ is cyclic.

Moreover, it follows from other results of Kuzennyi and Semko that any nilpotent metahamiltonian group is metabelian.

Theorem (N.F. Kuzennyi, N.N. Semko)

Let G be a locally graded metahamiltonian non-nilpotent group.

- If G is metabelian, then ∃K ≤ G such that G = K ⋈ G', K/C_K(G') is cyclic and for each y ∈ K \ C_K(G'), G' is a minimal ⟨y⟩-invariant subgroup.
- ② If G is not metabelian, G is periodic and if p is the characteristic of G, then |G''| = p, $|G'| = p^3$ and G/G' has no elements of oder p. Moreover, G'' ≤ Z(G), G'/G'' is an eccentric chief factor of G, and $G/C_G(G'/G'')$ is cyclic.

Moreover, it follows from other results of Kuzennyi and Semko that any nilpotent metahamiltonian group is metabelian.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

Let G be a locally finite group such that M = M(G) is not nilpotent.

If M(G) is metabelian, then G is metahamiltonian, unless $|M'| = p^2$ (where p is the caharacteristic of M(G)).

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally finite group. If M(G) is not metabelian, then G contains an abelian subgroup

caharacteristic of M(G) and every p-Sylow of G is nilpotent of class at most 2.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

Let G be a locally finite group such that M = M(G) is not nilpotent.

If M(G) is metabelian, then G is metahamiltonian, unless $|M'| = p^2$ (where p is the caharacteristic of M(G)).

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally finite group.

If M(G) is not metabelian, then G contains an abelian subgroup whose index is finite and divides $p(p-1)(p^2-1)$, where p is the caharacteristic of M(G) and every p-Sylow of G is nilpotent of class at most 2.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

Let G be a locally finite group such that M = M(G) is not nilpotent.

If M(G) is metabelian, then G is metahamiltonian, unless $|M'| = p^2$ (where p is the caharacteristic of M(G)).

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally finite group.

If M(G) is not metabelian, then G contains an abelian subgroup whose index is finite and divides $p(p-1)(p^2-1)$, where p is the caharacteristic of M(G) and every p-Sylow of G is nilpotent of class at most 2.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

Let G be a locally finite group such that M = M(G) is not nilpotent.

If M(G) is metabelian, then G is metahamiltonian, unless $|M'| = p^2$ (where p is the caharacteristic of M(G)).

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally finite group.

If M(G) is not metabelian, then G contains an abelian subgroup whose index is finite and divides $p(p-1)(p^2-1)$, where p is the caharacteristic of M(G) and every p-Sylow of G is nilpotent of class at most 2.

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

Let G be a locally polycyclic-by-finite group such that M = M(G) is not nilpotent.

If M(G) is metabelian, then G is metahamiltonian, unless $|M'| = p^2$ (where p is the caharacteristic of M(G)).

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

Let G be a locally polycyclic-by-finite group such that M = M(G) is not nilpotent.

If M(G) is metabelian, then G is metahamiltonian, unless $|M'| = p^2$ (where p is the caharacteristic of M(G)).

Metanorm and non-abelian subgroups

It was shown by Kuzennyi and Semko that in a soluble metahamiltonian group G every non-abelian subgroup contains G'.

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a group such that M = M(G) is not nilpotent. If either G is locally graded or M is metabelian, then every nonabelian subgroup of G contains M'.

Metanorm and non-abelian subgroups

It was shown by Kuzennyi and Semko that in a soluble metahamiltonian group G every non-abelian subgroup contains G'.

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a group such that M = M(G) is not nilpotent. If either G is locally graded or M is metabelian, then every nonabelian subgroup of G contains M'.

G/M(G) and G'

- A celebrated theorem of I.Schur states that if G/Z(G) is finite, then G' is finite.
- If G/Z(G) is polycyclic-by-finite, then G' is polycyclic-by-finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group . If G/M(G) is finite, then G' is finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If G/M(G) is polycyclic-byfinite, then G' is polycyclic-byfinite.

G/M(G) and G'

- A celebrated theorem of I.Schur states that if G/Z(G) is finite, then G' is finite.
- If G/Z(G) is polycyclic-by-finite, then G' is polycyclic-by-finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group . If G/M(G) is finite, then G' is finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If G/M(G) is polycyclic-byfinite, then G' is polycyclic-byfinite.

G/M(G) and G'

- A celebrated theorem of I.Schur states that if G/Z(G) is finite, then G' is finite.
- If G/Z(G) is polycyclic-by-finite, then G' is polycyclic-by-finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group . If G/M(G) is finite, then G' is finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If G/M(G) is polycyclic-byfinite, then G' is polycyclic-byfinite.

G/M(G) and G'

- A celebrated theorem of I.Schur states that if G/Z(G) is finite, then G' is finite.
- If G/Z(G) is polycyclic-by-finite, then G' is polycyclic-by-finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group . If G/M(G) is finite, then G' is finite.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If G/M(G) is polycyclic-byfinite, then G' is polycyclic-byfinite.

[M(G),G]

It follows from Baer's result on groups with non-periodic norm, that [N(G), G] is always periodic.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) If G is a locally graded group, then [M(G), G] is periodic.

[M(G),G]

It follows from Baer's result on groups with non-periodic norm, that [N(G), G] is always periodic.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) If G is a locally graded group, then [M(G), G] is periodic.

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

• $M'' \leq Z(G)$

2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then: $M'' \leq Z(G)$

 \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V}

② if M is not nilpotent, then M/M' ≤ Z(G/M')

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

- $M'' \leqslant \mathsf{Z}(\mathsf{G})$
- 2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

- $M'' \leqslant \mathsf{Z}(\mathsf{G})$
- 2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group.

If M = M(G) is not nilpotent, then $Z_2(M) \leqslant Z_2(G)$.

 $\operatorname{Proof} - M/M' \leqslant Z(G/M') \Rightarrow [M,G] \leqslant M' .$

 $\Rightarrow [\mathsf{Z}_2(\mathsf{M}),\mathsf{G}] \leqslant \mathsf{Z}_2(\mathsf{M}) \cap \mathsf{M}'$

Put $L = Z_2(M) \cap M'$.

M'/M'' is an eccentric chief factor of M $\,$

 $LM'' < M' \Rightarrow L \leq M''$

 $\Rightarrow L \leqslant Z(G) \Rightarrow [Z_2(M), G] \leqslant Z(G)$ $[Z_2(M), G, G] = \{1\}.$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

- $M'' \leqslant \mathsf{Z}(\mathsf{G})$
- 2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$.

$$\begin{split} & \operatorname{Proof} - M/M' \leqslant Z(G/M') \Rightarrow [M,G] \leqslant M' \, . \\ & \Rightarrow [Z_2(M),G] \leqslant Z_2(M) \cap M' . \\ & \operatorname{Put} L = Z_2(M) \cap M' . \\ & M'/M'' \text{ is an eccentric chief factor of } M \Rightarrow \\ & LM'' < M' \Rightarrow L \leqslant M'' \\ & \Rightarrow L \leqslant Z(G) \Rightarrow [Z_2(M),G] \leqslant Z(G) \\ & [Z_2(M),G,G] = \{1\}. \end{split}$$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

- $M'' \leqslant \mathsf{Z}(\mathsf{G})$
- 2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$.

 $\operatorname{Proof} - \, M/M' \leqslant \mathsf{Z}(\mathsf{G}/\mathsf{M}') \, \Rightarrow \, [\mathsf{M},\mathsf{G}] \leqslant \mathsf{M}' \, .$

 $\Rightarrow [Z_2(M), G] \leq Z_2(M) \cap M'.$ Put L = Z₂(M) $\cap M'.$ M'/M" is an eccentric chief factor of M
LM" < M' \Rightarrow L \leq M" \Rightarrow L \leq Z(G) \Rightarrow [Z₂(M), G] \leq Z(G)

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

- $M'' \leqslant \mathsf{Z}(\mathsf{G})$
- 2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$. PROOF – $M/M' \leq Z(G/M') \Rightarrow [M, G] \leq M'$. $\Rightarrow [Z_2(M), G] \leq Z_2(M) \cap M'$. Put $L = Z_2(M) \cap M'$. M'/M'' is an eccentric chief factor of $M \Rightarrow LM'' < M' \Rightarrow L \leq M''$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

- $M'' \leqslant Z(G)$
- 2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$.

$$P_{\text{ROOF}} - M/M' \leq Z(G/M') \Rightarrow [M, G] \leq M'$$

$$\Rightarrow [Z_2(M), G] \leq Z_2(M) \cap M'.$$

Put $L = Z_2(M) \cap M'.$

M'/M'' is an eccentric chief factor of $M \Rightarrow M'' \ge M'' \Rightarrow M \le M''$

 $\Rightarrow L \leq Z(G) \Rightarrow [Z_2(M), G] \leq Z(G)$ $[Z_2(M), G, G] = {1}.$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

 $M'' \leqslant \mathsf{Z}(\mathsf{G})$

2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$. PROOF – $M/M' \leq Z(G/M') \Rightarrow [M, G] \leq M'$. $\Rightarrow [Z_2(M), G] \leq Z_2(M) \cap M'$. Put $L = Z_2(M) \cap M'$. M'/M'' is an eccentric chief factor of $M \Rightarrow [M'' < M' \Rightarrow] \leq M''$

 $\Rightarrow L \leq Z(G) \Rightarrow [Z_2(M), G] \leq Z(G)$ $[Z_2(M), G, G] = \{1\}.$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

- $M'' \leqslant \mathsf{Z}(\mathsf{G})$
- 2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$. PROOF – $M/M' \leq Z(G/M') \Rightarrow [M, G] \leq M'$. $\Rightarrow [Z_2(M), G] \leq Z_2(M) \cap M'$. Put $L = Z_2(M) \cap M'$. M'/M'' is an eccentric chief factor of $M \Rightarrow LM'' < M' \Rightarrow L \leq M''$

 $\Rightarrow L \leqslant Z(G) \Rightarrow [Z_2(M),G] \leqslant Z(G) \\ [Z_2(M),G,G] = \{1\}.$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

 $M'' \leqslant \mathsf{Z}(\mathsf{G})$

2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$. PROOF – $M/M' \leq Z(G/M') \Rightarrow [M, G] \leq M'$.

$$\Rightarrow \ [Z_2(M),G] \leqslant Z_2(M) \cap M'$$

Put $L = Z_2(M) \cap M'$.

M'/M'' is an eccentric chief factor of $M \Rightarrow LM'' < M' \Rightarrow L \le M''$

$$\Rightarrow L \leqslant Z(G) \Rightarrow [Z_2(M),G] \leqslant Z(G)$$
$$[Z_2(M),G,G] = \{1\}.$$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

 $M'' \leqslant \mathsf{Z}(\mathsf{G})$

2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$. PROOF – $M/M' \leq Z(G/M') \Rightarrow [M, G] \leq M'$. $\Rightarrow [Z_2(M), G] \leq Z_2(M) \cap M'$. Put $L = Z_2(M) \cap M'$. M'/M'' is an eccentric chief factor of $M \Rightarrow$ $LM'' < M' \Rightarrow L \leq M''$ $\Rightarrow L \leq Z(G) \Rightarrow [Z_2(M), G] \leq Z(G)$

Theorem (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group, and put M = M(G). Then:

 $M'' \leqslant \mathsf{Z}(\mathsf{G})$

2 if M is not nilpotent, then $M/M' \leq Z(G/M')$

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally graded group. If M = M(G) is not nilpotent, then $Z_2(M) \leq Z_2(G)$. PROOF – $M/M' \leq Z(G/M') \Rightarrow [M, G] \leq M'$. $\Rightarrow [Z_2(M), G] \leq Z_2(M) \cap M'$. Put $L = Z_2(M) \cap M'$. M'/M'' is an eccentric chief factor of $M \Rightarrow$ $LM'' < M' \Rightarrow L \leq M''$ $\Rightarrow L \leq Z(G) \Rightarrow [Z_2(M), G] \leq Z(G)$

 $[Z_2(M), G, G] = \{1\}.$

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally nilpotent group.

Then $M(G)/(M(G) \cap G'') \leq Z_{\omega+1}(G/(M(G) \cap G''))$. Moreover, if G is nilpotent-by-finite, then $M(G) \leq Z_m(G)$ for some $m \in N$.

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally nilpotent group. Then $M(G)/(M(G) \cap G'') \leq Z_{\omega+1}(G/(M(G) \cap G''))$. Moreover, if G is nilpotent-by-finite, then $M(G) \leq Z_m(G)$ for some $m \in \mathbb{N}$.

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally nilpotent group. Then $M(G)/(M(G) \cap G'') \leq Z_{\omega+1}(G/(M(G) \cap G''))$. Moreover, if G is nilpotent-by-finite, then $M(G) \leq Z_m(G)$ for some $m \in N$.

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally nilpotent group. Then $M(G)/(M(G) \cap G'') \leq Z_{\omega+1}(G/(M(G) \cap G''))$. Moreover, if G is nilpotent-by-finite, then $M(G) \leq Z_m(G)$ for some $m \in N$.

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally nilpotent group.

If M(G) is abelian, then every element of M(G) is a right 3-Engel element of G

Proposition (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella) Let G be a locally nilpotent group. Then $M(G)/(M(G) \cap G'') \leq Z_{\omega+1}(G/(M(G) \cap G''))$. Moreover, if G is nilpotent-by-finite, then $M(G) \leq Z_m(G)$ for some $m \in N$.

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

- if $M(G) \cap G''$ is finite, then $M(G) \leq Z_{\omega+1}(G)$
- if G' ≤ M(G), then M(G) ≤ Z_{ω+1}(G) (and so G is hypercentral of length at most ω + 2).

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

- if $M(G) \cap G''$ is finite, then $M(G) \leq Z_{\omega+1}(G)$
- if $G' \leq M(G)$, then $M(G) \leq Z_{\omega+1}(G)$ (and so G is hypercentral of length at most $\omega + 2$).

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

- if $M(G) \cap G''$ is finite, then $M(G) \leqslant Z_{\omega+1}(G)$
- if $G' \leq M(G)$, then $M(G) \leq Z_{\omega+1}(G)$ (and so G is hypercentral of length at most $\omega + 2$).

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

- if $M(G) \cap G''$ is finite, then $M(G) \leq Z_{\omega+1}(G)$
- if $G' \leq M(G)$, then $M(G) \leq Z_{\omega+1}(G)$ (and so G is hypercentral of length at most $\omega + 2$).

Corollary (MDF, F. de Giovanni, L.A. Kurdachenko, C. Musella)

- if $M(G) \cap G''$ is finite, then $M(G) \leq Z_{\omega+1}(G)$
- if $G' \leq M(G)$, then $M(G) \leq Z_{\omega+1}(G)$ (and so G is hypercentral of length at most $\omega + 2$).