A Conjecture on Groups in which Normality is a Transitive Relation

Alessio Russo

University of Campania "Luigi Vanvitelli"

SandGAL 2019

Semigroups and Groups, Automata, Logics June 10, 2019 – Cremona (Italy)

Historical Background

A group *G* is said to be a *T*-group if all subnormal subgroups of G are normal (i.e., if the normality in *G* is a transitive relation). Clearly, every *Dedekind group* is a *T*-group, and the nilpotent *T*-groups are exactly the Dedekind ones. It follows that $\gamma_3(G) = \gamma_4(G)$, and that $C_G(G')$ is the *Fitting subgroup* of *G*, if *G* is a *T*-group.

- Best, Taussky (1942) Finite groups with cyclic subgroups are T-groups.
- Zacher (1952) Characterization of finite soluble
 T-groups by means of Sylow tower properties.
- Solution Gaschütz (1957) Let G be a finite soluble Tgroup and let $L = \gamma_3(G)$. Then L is abelian of odd order, G/L is a Dedekind group of order relatively prime to |L|. Moreover, G acts over L by conjugation as a group of power automorphisms.

Robinson (1964) Description of the structure of infinite soluble T-groups (more complicated!)

Some results:

- Soluble *T*-groups are metabelian;
- Soluble *T*-groups are locally supersoluble;
- Finitely generated soluble T-groups are either finite or abelian.

Clearly, the class *T* is quotient closed, but it is not subgroups closed since every simple group is a *T*-group.

- A group *G* is called a \overline{T} -group if all subgroups of *G* are *T*-groups.
- ✓ Every finite soluble T-group is a T̄-group.
 ✓ All finite T̄-groups are soluble.

Theorem 1 (Robinson, 1964) The soluble periodic \overline{T} -groups are precisely the periodic soluble *T*-groups with the property that $L=\gamma_3(G)$ has the 2-component $L_2=1$ and $\pi(L) \cap \pi(G/L)=\emptyset$.

Theorem 2 (Robinson, 1964) Let G be a nonperiodic soluble \overline{T} -group. Then G is abelian.

Some Examples

- A *Tarski p-group* (Ol'shanskii, 1979, i.e., an infinite (simple) group in which all proper non-trivial subgroups have order *p*), satisfies the *T*-property.
- ✓ The locally dihedral 2-group $D_2\infty$ is a soluble *T*-group which does not satisfy the property \overline{T} .
- ✓ Let *p* be an odd prime. Then the semidirect product $G = \langle x \rangle \ltimes Z(p^{\infty})$, where *x* is the inversion, is a soluble \overline{T} -group.

In general, a locally \overline{T} -group need not split over the last term of its lower central series.

✓ Kovacs, Neumann and De Vries (1961), constructed a locally finite group G such that the last term L of its lower central series is a countable quasi-central abelian subgroup such that $L_2=1$ and G/L is an uncountable elementary abelian 2-group. Moreover, each Sylow 2-subgroup of G is countable and hence it cannot be a complement of *L* in *G*.

Locally Graded Groups

(Chernikov, 1970) A group *G* is said to be *locally graded* (*LG*) if every non-trivial finitely generated subgroup of *G* has a non-trivial finite homomorphic image.

Some Suclasses of \mathcal{LG}

- Locally finite groups.
- Locally soluble groups.
- (Weakly) Radical groups.
- Groups with no infinite simple sections.
- Residually finite groups.
- Free groups (Iwasawa).

Remarks

- *LG* is the most natural class of generalized soluble groups which is useful if one wishes to avoid the presence of finitely genereted infinite simple groups (Tarski groups) or other similar patologies.
- Some situations become trivial if they are considered in *LG*. For example, *there is no infnite non-abelian group all of whose proper subgroups are abelian*.

- Some problems which have negative answer in general, have an affirmative solution for *LG*-groups. An example is the Bounded Burnside Problem which, in general, has negative answer (Novikov and Adian, 1964).
- Let G be a locally graded group of finite exponent. Then G is locally finite.

(The statement follows immediately from the positive answer to the Restricted Burnside Problem – Zelmanov, 1989; Fields Medal in 1994 for this work)

Locally Graded \overline{T} -groups

Theorem 3 Let G be a periodic locally graded \overline{T} -group. Then G is soluble (and hence G is metabelian).

Conjecture

Let G be a non-periodic locally graded \overline{T} -group. Then G is abelian.

(Khukhro, Sozutov, **The Kourovka Notebook**, vol. 16, (2006), Question 14.36 (de Giovanni)).

(**Ol'shanskii**, 1979) *There exists a torsion free non-abelian simple group in which all proper non-trivial subgroups are cyclic.*

Proposition 4 Let G be a non-periodic \overline{T} -group having no infinite simple sections. Then G is abelian.

Proof – For a contradicion, assume that G contains a finitely generated subgroup *E* subgroup *E* which is not metabelian. Since $E/E^{(2)}$ is polycyclic, it follows that $E^{(2)}$ is the normal closure of a finite subset, and hence by Zorn's lemma it contains a maximal E- \sim invariant subgroup M.

Since *E* is a *T*-group, then $E^{(2)}/M$ is simple, and so it a finite \overline{T} -group by hypothesis. Therefore, *E*/*M* is soluble, and hence $E^{(2)} \leq M$, a contradiction.

Remark – Clearly, the class \mathcal{LG} of locally graded groups is closed under subgroups and extensions. But, as any free group is locally graded, then \mathcal{LG} is not quotient closed. On the other hand, it is useful to recall the following result: **(Longobardi, Maj, Smith, 1995)** *Let G be any locally graded group. If N is a normal soluble subgroup of G, then G/N is locally* \checkmark \$

Lemma 5 Let G be a non-periodic locally graded \overline{T} -group. Then the set L consisting of elements of finite order of G is a subgroup such that $L \leq Z(G)$.

Proof – Let *x* and *y* be elements of finite order of *G*. Assume that the subgroup $\langle x, y \rangle$ is infinite. As *G* is locally graded, it can be constructed a strictly descending sequence $(H_n)_{n \in \mathbb{N}}$ of normal subgroups of *G*

 $H = H_1 > H_2 > ... > H_n > ...$

such that H/H_n is finite (and even metabelian) for all *n*. Put $X = \bigcap_{n \in \mathbb{N}} H_n$. Then the factor group *H*/X is an infinite finitely generated soluble *T*-group, and hence it is abelian. Thus H/H' is infinite, a contradiction. It follows that $\langle x,y \rangle$ is finite. Therefore *L* is a subgroup of *G*. Finally, let $x \in L$ and $y \in G \setminus L$ and put $K = \langle x, y \rangle$.

Clearly, $K = \langle y \rangle \ltimes L_1$, where L_1 is the torsion subgroup of K. By Theorem 3 K is soluble, and hence it is abelian. Thus x commute with every element of $G \setminus L$, and hence $x \in Z(G)$.

Embeddings Properties and Classes T and \overline{T}

Let \mathfrak{U} be an universe of groups. Denote by $\mathfrak{L}(G)$ the lattice subgroup of a group G. A *subgroup embedding property* (related to \mathfrak{U}) is a map f which associates with each group G in \mathfrak{U} a subset f(G) of $\mathfrak{L}(G)$ and satisfies the equation $\alpha(f(G))=f(\alpha(G))$, for all group isomorphisms $\alpha: G \to \alpha(G)$.

Obvious example: (sub)normality.

Subnormalizer Condition (Misovskikh, 2002)

A subgroup *X* of a group *G* satisfies the *subnormalizer condition* if for every subgroup *Y* of *G* such that

 $X \leq Y \leq N_G(X),$

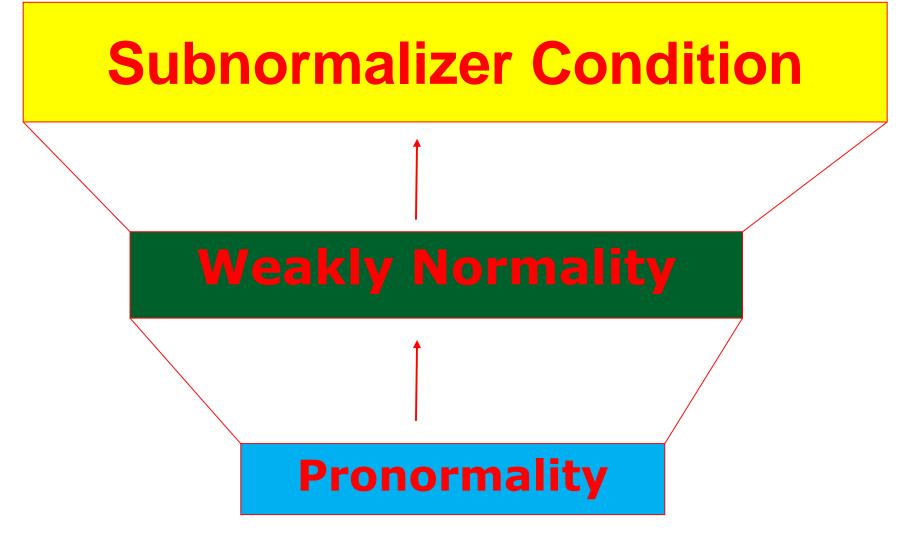
then

 $N_G(Y) \le N_G(X).$

Different notations:

- Pseudonormal (de Giovanni, Vincenzi, 2003)
- *Transitively normal* (Kurdachenko, Subbotin, 2006)

Proposition 6 A group G has the \overline{T} -property if and only if all subgroups of G satisfy the subnormalizer condition.



Pronormality (P. Hall, Rose, ~1967)

A subgroup *X* of a group *G* is said to be *pronormal* if the *X* and X^g are conjugate in the subgroup < *X*, X^g >, for all $g \in G$.

Clearly, every pronormal subgroup satisfies the subnormalizer condition. Moreover, *if X is a subgroup of a group G such that X is*

pronormal and subnormal, then X is normal.

Some Examples

- Normal subgroup of arbitrary group.
- Maximal subgroup of arbitrary group.
- Sylow subgroup of finite groups.
- Hall subgroups of finite soluble groups.
- Carter subgroups of finite soluble groups.

Theorem 7 (Peng, 1969) *Let G be a finite group. Then the following are equivalent:*

- 1. Every subgroup of G is pronormal;
- 2. *G* is a \overline{T} -group.

In the infinite case the strongest result about the periodic groups with their subgroups pronormal is due to Kuzennyi and Subbotin (1987).

Theorem 8 (Kuzennyi, Subbotin, 1987)

- A periodic locally graded group has all its
- subgroups pronormal if and only if it is isomprphic
- to a group G having the following structure:
- 1. *G* is periodic and contains a normal abelian subroup *A* such that *G*/*A* is a Dedekind group;
- 2. $\pi(A) \cap \pi(G/A) = \emptyset;$
- 3. Elements of G induce power automorphisms in A and A=[A,G];
- 4. If Q is a Sylow $\pi(G/A)$ -subgroup of G, then

 $G = Q \ltimes A.$

Remarks

- There exists a locally finite *T*-group *G* which contains non-pronormal subgroups (Kuzennyi, Subbotin, 1987). Note that *G* splits over the last term of its central lower series.
- The quoted example of Kovacs, Neumann and De Vries is a locally finite *T*-group *G* which does **not splits** over the last term of its central lower series. It follows that every 2-Sylow subgroup of *G* is not pronormal.

Theorem 9 (Robinson, A. R., Vincenzi, 2007) *Let G be a non-periodic locally graded group, all of whose subgroups are pronormal. Then G is abelian.*

(*Key*) **Lemma 10 (Robinson, A. R., Vincenzi, 2007)** *Let G be a finitely generated locally graded group with finite upper rank. If G is HNN-free, then G is polycyclic-by-finite.*

Weakly normality (Müller, 1966)

A subgroup *X* of a group *G* is said to be *weakly normal* if $X^g = X$ whenever *g* is an element of *G* such that $X^g \leq N_G(X)$.

Every pronormal subgroup is weakly normal (vice-versa is **not** true!). Moreover,

if X is a subgroup of a group G such that X is weakly normal and subnormal, then X is normal.

Theorem 11 (Ballester-Bolinches, Esteban-Romero, 2003) Let G be a finite group. Then G is a soluble T-group if and only if every subgroup of *G* is weakly normal. Theorem 12 (A. R., 2012) Let G be a locally graded group. Then the following hold: 1. If G is periodic, then G is a \overline{T} -group if and only *if every subgroup of G is weakly normal.* 2. If G is non-periodic and all its subgroups are $\mathbf{v} \mathbf{v}_{\mathbf{v}}$ weakly normal, then G is abelian. A. Russo – A conjecture on T-Groups

Recent Results

A group *G* is said to be a T_c -group (a $\overline{T_c}$ -group) if every cyclic subnormal subgroup of *G* is normal (every subgroup of *G* is a T_c -group) (**Xu**, **1988; Sakamoto**, **2001; Robinson**, **2005**)

Theorem 13 (Esteban-Romero, de Giovanni, A. R., 2019) Let G be a torsion free weakly radical group with the $\overline{T_c}$ -property. Then G is abelian.

Remarks

✓ The infinite dihedral group D_{∞} is a \overline{T}_c -group So there exists (finitely genereted) soluble non-periodic \overline{T}_c -groups which are not abelian.

✓ The consideration of D_{∞} also shows that the class $\overline{T_c}$ is non quotient closed.

Weak subnormalizer condition (Esteban-Romero, de Giovanni, A. R., 2019)

A subgroup *X* of a group *G* satisfies the *weak* subnormalizer condition if for every **nonnormal** subgroup *Y* of *G* such that $X \le Y \le N_G(X)$,

then

 $N_G(Y) \leq N_G(X).$

Theorem 13 (Esteban-Romero, de Giovanni, A. R., 2019)

Let G be a weakly radical group all of whose subgroups satisfy the weak subnormalizer condition. Then the commutator subgroup G' of G is periodic. In particular, G is abelian, if it is torsion-free.

The consideration of the direct product $\mathbb{Z} \times S_3$ shows that there exist non-periodic soluble non-abelian groups all of whose subgroups

satisfy the weak subnormalizer condition.

