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Università degli Studi dell’Aquila

Cremona, 11 giugno 2019
SandGAL - Semigroups and Groups, Automata, Logics

AUGURI SANDRA!



P. Hall, The classification of prime-power groups, Journal für die
reine und angewandte Mathematik, 1940.



I (Hall) ”Commutator function” of G:
[−,−]G : G/Z (G )× G/Z (G )→ G ′.

I (Hall) ”Roughly, the definition amounts to this, that two
groups (G and H) are isoclinic if and only if their commutator
functions are essentially the same”.

I That means: there are group isomorphisms
φ : G/Z (G )→ H/Z (H) and ψ : G ′ → H ′ such that
[−,−]H ◦ (φ× φ) = ψ ◦ [−,−]G .

I Clearly an equivalence relation among groups, coarser than
isomorphism.

I Finite p-groups of odd order from now on.
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I (Hall) ”We have the theorem that” the numbers qi/|G |,
where qi is the number of conjugacy classes of length pi of G ,
are isoclinic invariants.

I In fact, since all the elements of a coset of Z (G ) have the
same centralizer, the set of the elements of G whose
conjugacy class has length pi is a union of say ni cosets of
Z (G ). We have that qi = ni |Z (G )|/pi . Dividing by |G | we
have the theorem: qi/|G | = ni/|G : Z (G )|pi , as ni is clearly
an isoclinic invariant, and so is |G : Z (G )|.

I As a corollary, the set of the conjugacy classes lengths, and in
particular the breadth b(G ) (the largest i for which qi 6= 0)
and the commutativity k(G )/|G | are isoclinic invariants (k(G )
is the sum of the qi ’s, the usual class number).
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I (Hall) ”A somewhat analogous series of numbers” ri/|G |,
where ri is the number of irreducible complex characters of
degree pi of G , are isoclinic invariants.

I Proof by A. Mann, 1999 !

I As a consequence, the set of the degrees of the characters,
and in particular the largest character degree, are isoclinic
invariants.

I P. Hall then proves that in each ”family” (i.e. equivalence
class under the relation of isoclinism) there are groups for
which Z (G ) ≤ G ′, called stem groups of the family, and that
they are all of the same minimal order among the groups of
the family.
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I Stem p-groups of breadth 1 (i.e. the non-central classes have
order p) are the extraspecial p-groups. (Knoche 1951,
Burnside 1911)

I Extraspecial p-groups have unbounded order, unbounded
largest character degree.

I A bound on b(G ) is not enough to bound the order of the
corresponding stem groups.
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I p-groups of small breadth have been studied by many authors:
e.g. Gavioli, Mann, Monti, Previtali and S. (1998), and, with
different techniques, Parmeggiani and Stellmacher (1999)
gave a classification of p-groups of breadth 2 and 3.

I The set of possible values for the commutativity, i.e. the
isoclinic invariant k(G )/|G | for such groups, is surprisingly
small.
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I A systematic study was started, to understand how strictly the
commutativity of the group depends on its structure.

I (A. Cupaiolo, N. Gavioli, A. Morresi Zuccari, CMS 2016) The
breadth polynomial of G is defined as

kG (x) =

b(G)∑
i=0

ki (G )

|G |
x i .

I We studied the behavior of the breadth polynomial under
taking maximal subgroups, maximal quotients, and direct
products.
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I p-groups whose largest irreducible character degree is p have
been characterized by Isaacs as those that either have center
of index p3, or have a maximal abelian subgroup.

I Among them we find the wreath product of a cyclic p-group
with a group of order p: stem groups of unbounded order and
unbounded breadth.

I A bound on the largest character degree is not enough to
bound the order of the corresponding stem groups.

I p-groups with bounded largest character degree have been
extensively studied, see e.g. Chapter 12 of Isaacs book in
Character Theory.
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I The character degree polynomial of G is defined as

dG (x) =
1

|G |

∞∑
i=0

di (G )x i .

I We studied the properties of the character degree polynomial,
that are not surprisingly similar to those of the breadth
polynomial.

I We defined the breadth-degree type of a finite p-group G as
the pair(b(G ), d(G ), where pd(G) is the largest irreducible
character degree of G , and we classified easily the groups of
small breadth-degree type.

I We constructed examples showing that a bound on b(G ) or
on d(G ) does not yield a bound on |G |, even if we assume
that G is a stem group.
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I Both bounds together work!

I (N. Gavioli and V. Monti, 2018) A stem p-group of breadth b
and largest character degree pd has order bounded by
pb(3b+4d−1)/2.

I Only a finite number of stem p-groups for each choice of b
and d .
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I The p-groups whose non-linear characters have the same
degree were classified by Isaacs (1969). See his book on
character theory.

I The classification of groups whose non-central conjugacy
classes have the same length was started by Ito (1953) who
reduced the problem to p-groups.

I Isaacs (1970) proved that G/Z (G ) has exponent p.

I Ishikawa (2002) proved that the nilpotency class of such
groups is 2 or 3.

I By the result of Isaacs, the stem p-groups of class 2 are
special.
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I R. Dark and S. (1996) exhibited a family of examples of
p-groups H(n) of class 3 whose non-central conjugacy classes
have the same length.

I We have H(n)/Z (H(n) is isomorphic to U3(n), the group of
lower unitriangular matrices over GF (pn).

I T.K. Naik, R.D. Kitture and M.K.Yadav have shown that, up
to isoclinism, these are the only examples of stem p-groups of
class 3 whose non-central conjugacy classes have the same
length.

I They prove that G/Z (G ) is isomorphic to U3(n) and that G ′

and H(n)′ are isomorphic.

I Finally they show the uniqueness of the commutation map.
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I (A. Chermak and A. Delgado, 1989) For H ≤ G define
mG (H) = |H||CG (H)|.

I f1(G ) will be the maximal value of mG (H) over all H ≤ G .

I Define F1(G ) = {H ≤ G |mG (H) = f1(G )}.
I Theorem (Chermak-Delgado): F1(G ) is a sublattice of the

lattice of all subgroups of G , as products and intersections of
elements of F1 are in F1. See Isaacs book on finite groups.

I G. Glauberman (2006) studied the elements H of F1(G ) such
that CG (H) = Z (H).

I V. Russo, A Morresi-Zuccari and S. (2018) observed that
many properties of F1(G ) are invariant under isoclinism, and
applied this to the study of its structure for groups in which
the only element of F1(G ) that contains its centralizer is G
itself (SMCL groups).
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